Model Uncertainty in the North American Rapid Refresh Ensemble: Multi-Physics vs. Stochastic Physics

Isidora Jankov¹, Judith Berner², Jeff Beck¹, Georg Grell³, Joseph Olson⁴ and Tatyana Smirnova⁴

¹Cooperative Institute for Research in the Atmosphere (CIRA)/Affiliated with NOAA/ESRL/ GSD, and Developmental Testbed Center (DTC)

²National Center for Atmospheric research (NCAR),

³NOAA/ESRL Global System Division

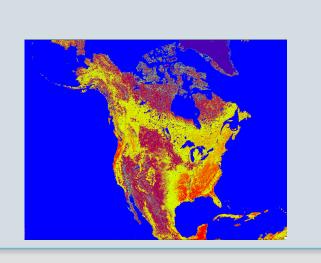
⁴Cooperative Institute for Research in Environmental Sciences (CIRES)/Affiliated with NOAA/ESRL/GSD

Introduction

The goal is to work toward the development and implementation of the hourly-updated North American Rapid Refresh Ensemble (NARRE) forecasting system. This system is planned for implementation during 2017, providing better probabilistic forecasts for aviation and other short-range applications. The work will be conducted collaboratively by the GSD/EMB model/assimilation development team with EMC.

In the first version of the system, model uncertainty will be addressed by using a mixed-dycore and mixed-physics (Table 1). Ultimately the goal is to switch to stochastic physics. Firstly, the focus is on cumulus treatment. The stochastically perturbed Grell-Freitas convective scheme ensemble is compared to a mixed-physics ensemble consisting of Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ), Grell-Freitas (GF) and Arakawa-Schubert (AS) convective treatments. Preliminary results comparing the mixed-physics ensemble vs. the stochastic physics ensemble are presented.

Current Status of the NARRE System

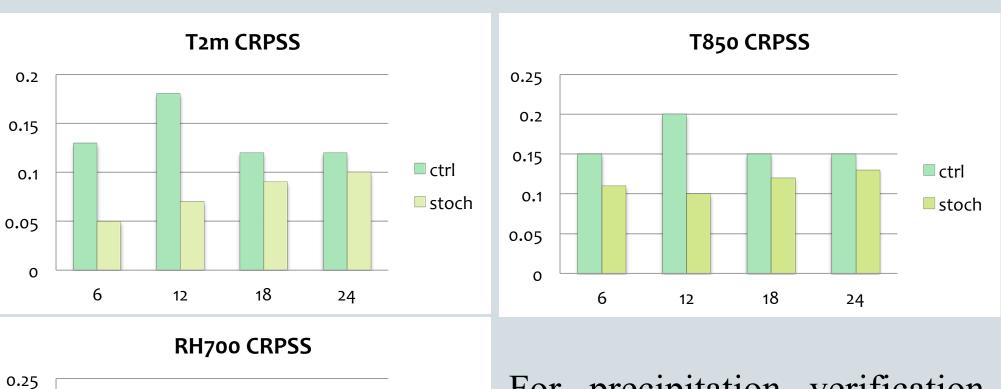

- RAP members include variations in physics (PBL, surface layer and convective treatment, as well as IC/LBCs)
- NMMB members differ only in IC/LBCs

Member	Microphy.	Sfc.Lay.	PBL	Conve.	LBs
Ctl. rap	Thom.	MYNN	MYNN	Grell	GFS
rap1	Thom.	MOJ	MYJ	BMJ	GEFS1
rap2	Ferr.	MO	YSU	BMJ	GEFS ₂
rap3	Ferr.	MO	YSU	KF	GEFS ₃
nmmb	Ferr.	MOJ	MYJ	BMJ	GFS
nmmb1	Ferr.	MOJ	MYJ	BMJ	GEFS1
nmmb2	Ferr.	MOJ	MYJ	ВМЈ	GEFS ₂
nmmb3	Ferr	MOJ	MYJ	ВМЈ	GEFS ₃

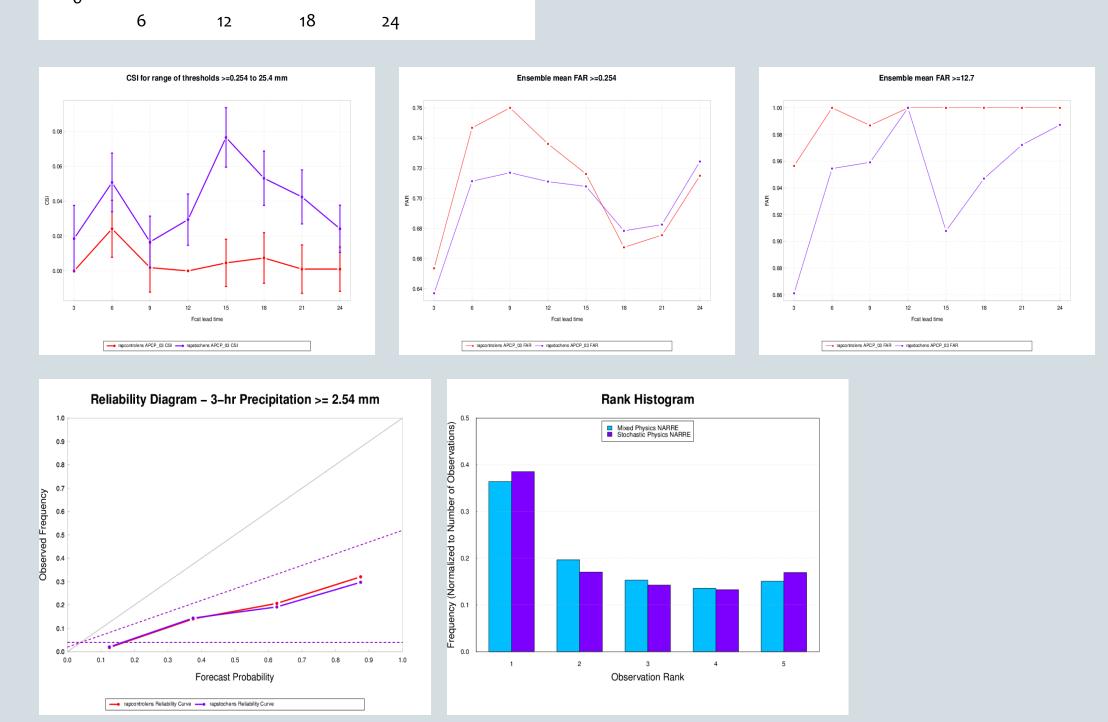
Table 1. The mixed-physics, mixed-dycore NARRE configuration


Stochastic Physics Experiment Design

- First focusing on RAP (ARW) NARRE members only
- Starting with convective treatment
- The mixed-physics ensemble consists of 4 members using KF, BMJ, GF and AS convective treatments
- Stochastic GF ensemble consists of 4 members with stochastically perturbed closures
- 2-week period: May 15-31, 2013



Preliminary Results


The ensemble mean RMSE and spread are evaluated for different variables. Examples for 2-m temperature and 700 mb relative humidity are presented.

The Continuous Rank Probability Skill Score (CRPSS) for different variables was also evaluated. Examples for 2-m temperature, 850 mb temperature and 700 mb relative humidity are presented.

For precipitation verification, both deterministic (ensemble mean) and probabilistic performance were evaluated.

- RMSE, Spread and CRPSS slightly better for the mixed-physics ensemble
- CRPSS of the stochastic ensemble seems to improve with the lead time
- Precipitation evaluation reveals better performance of the stochastic ensemble mean
- Precipitation probabilistic evaluation indicates very similar results between the ensembles.

Outlook

0.15

0.05

The next step will be performing many more experiments that include sensitivity to stochastic perturbation parameters (e.g., spatial de-correlation length and magnitude) as well as various options for stochastic parameter perturbations within the GF scheme (e.g., adding stochastic perturbations to the entrainment rate)

Collaborators

- NOAA/ESRL/GSD
- NOAA/EMC
- NCAR/DTC

Acknowledgements

Authors' thanks to John Osborn, Scott Gregory, John Halley Gotway and Tara Jensen for their help.